翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dynamical systems and chaos theory : ウィキペディア英語版
Dynamical systems theory
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called ''continuous dynamical systems''. When difference equations are employed, the theory is called ''discrete dynamical systems''. When the time variable runs over a set that is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a cantor set—one gets dynamic equations on time scales. Some situations may also be modeled by mixed operators, such as differential-difference equations.
This theory deals with the long-term qualitative behavior of dynamical systems, and studies the nature of, and when possible the solutions of, the equations of motion of systems that are often primarily mechanical or otherwise physical in nature, such as planetary orbits and the behaviour of electronic circuits, as well as systems that arise in biology, economics, and elsewhere. Much of modern research is focused on the study of chaotic systems.
This field of study is also called just ''dynamical systems'', ''mathematical dynamical systems theory'' or the ''mathematical theory of dynamical systems''.
== Overview ==
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems. Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does the long-term behavior of the system depend on its initial condition?"
An important goal is to describe the fixed points, or steady states of a given dynamical system; these are values of the variable that don't change over time. Some of these fixed points are ''attractive'', meaning that if the system starts out in a nearby state, it converges towards the fixed point.
Similarly, one is interested in ''periodic points'', states of the system that repeat after several timesteps. Periodic points can also be attractive. Sharkovskii's theorem is an interesting statement about the number of periodic points of a one-dimensional discrete dynamical system.
Even simple nonlinear dynamical systems often exhibit seemingly random behavior that has been called ''chaos''. The branch of dynamical systems that deals with the clean definition and investigation of chaos is called ''chaos theory''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dynamical systems theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.